The oblique prism below has an isosceles right triangle base. what expression represents the volume of the prism in cubic units?The answer is (A). Your welcome ​

Accepted Solution

Answer:[tex]V=(\frac{1}{2}x^{3}+x^{2})\ units^{2}[/tex]Step-by-step explanation:we know thatThe volume of the oblique prism is equal to[tex]V=BH[/tex]whereB is the area of the baseH is the height of the prismFind the area of the triangular baseThe area B is equal to[tex]B=\frac{1}{2}x^{2}\ units^{2}[/tex][tex]H=(x+2)\ units[/tex] ---> the height must be perpendicular to the basesubstitute[tex]V=(\frac{1}{2}x^{2})(x+2)[/tex][tex]V=(\frac{1}{2})(x^{3}+2x^{2})[/tex][tex]V=(\frac{1}{2}x^{3}+x^{2})\ units^{2}[/tex]